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Some figures are copied from the following books
• LWLS - Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, Thomas B. Schön, Machine Learning: A First Course for Engineers 

and Scientists, Cambridge University Press, 2022.

• GBC - Ian Goodfellow, Yoshua Bengio, and Aaron Courville, Deep Learning, MIT Press.



Let’s start from Multi-Layer Perceptron

• Fully connected between adjacent layers

– Many parameters → prone to overfitting

– Some connections may be unnecessary

– Not robust to shifts of input
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Full Connection → Sparse Connection

• Only keep local connections

– Assuming nearby inputs have stronger correlations
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(Fig. 9.2 in GBC)

Receptive field of a neuron

(Fig. 9.3 in GBC)



Receptive Field at a Deeper Layer

• With sparse connections, nodes at a deeper layer can still have a large 
receptive field, and global patterns could still be captured
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(Fig. 9.4 in GBC)
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Independent Weights → Shared Weights

• Assuming neurons at different locations process their inputs in the same 
way, we can let them share weights
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Much Fewer Parameters!
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• 5*5+5 parameters (biases are omitted in figures)
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• 3+1 parameters

𝑧𝑛 =

𝑚

𝑤𝑚𝑥𝑚+𝑛−2
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(Adapted from Fig. 9.3 in GBC)



This is basically convolution

• Continuous-time signals

𝑧 𝑡 = 𝑥 ∗ 𝑤 𝑡 = න𝑥 𝜏 𝑤 𝑡 − 𝜏 𝑑𝜏 = න𝑥 𝑡 − 𝜏 𝑤 𝜏 𝑑𝜏 = 𝑤 ∗ 𝑥 𝑡

• Discrete-time signals

𝑧 𝑛 = 𝑥 𝑛 ∗ 𝑤 𝑛 =

𝑚

𝑥 𝑚 𝑤 𝑛 −𝑚 =

𝑚

𝑥 𝑛 −𝑚 𝑤 𝑚 = 𝑤[𝑛] ∗ 𝑥[𝑛]

• Cross convolution: no flipping, but is the convolution referred to in deep learning

𝑧 𝑛 =

𝑚

𝑥 𝑚 𝑤 𝑛 +𝑚
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2D Convolution
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2D Convolution
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(Fig. 9.1 in GBC) 

Filter

Feature map



2D Convolution Example

• Vertical edge detection using a 1*2 kernel [-1, 1]

• (Cross-)convolving a gray-scale image with this kernel computes the intensity 
difference between two horizontally adjacent pixels
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(Fig. 9.6 in GBC)



Equivariance to Translation

• Shifting input results in the same feature map, but at a correspondingly 
shifted position
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http://visual.cs.ucl.ac.uk/pubs/harmonicNets/pdfs/worrallEtAl2017.pdf

http://visual.cs.ucl.ac.uk/pubs/harmonicNets/pdfs/worrallEtAl2017.pdf


Zero Padding Before Convolution

• Convolution reduces size if no zero 
padding

– Called “valid convolution”

• Use zero padding to maintain size

– Called “same convolution” (preferred)

• Pad more zeros to make edge 
nodes have the same number of 
connections as internal nodes

– Called “full convolution”
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2D Zero Padding
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With “same” zero paddingWithout zero padding

(Fig. 6.10 in LWLS) (Fig. 6.11 in LWLS)



Convolution with Strides

• Downsampling after convolution 
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Stride size = 2

(Fig. 9.12 in GBC) 



2D Convolution with Strides
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(Figure from LWLS)



Pooling

• Pooling is another way to reduce the size of feature maps

– Max pooling: taking the max → result is invariant to small shifts

– Average pooling: taking the average

• No trainable parameters
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(Figure from LWLS)



Nonlinear Activation

• As discussed before, convolution is a linear operation

• We need a nonlinear activation after convolution to build deep nets

• Rectified Linear Unit (ReLU) and Leaky ReLU is most used
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Multiple Channels

• Convolution with a single filter (kernel) detects only one pattern (e.g., vertical edges)

• Use multiple filters to detect more patterns

– Each filter results in one feature map

– Multiple filter result in multiple feature maps, stacked as channels

– When input is 2D with multiple channels, each filter becomes a 3D tensor
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(Fig. 6.14 in LWLS)



Convolution Layer
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(Fig. 9.7 in GBC)



Typical Output Layer
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• After a stack of convolutional layers, a few fully connected layers often follow 
to give the output

– The last convolutional layer’s feature map is reshaped to a vector

• 𝑀-Class Classification: 

– Use 𝑀 output nodes

– Softmax activation (probability): ො𝑦𝑖 =
𝑒ℎ𝑖

σ𝑗=0
𝑀−1 𝑒

ℎ𝑗
, ∀𝑖 = 0,⋯ ,𝑀 − 1

– Cross entropy loss: 𝐿𝐶𝐸 = −σ𝑖=1
𝑁 𝑦𝑖 log ො𝑦𝑖

Ground truth

(Figure from https://towardsdatascience.com/cross-entropy-loss-function-f38c4ec8643e) 

https://towardsdatascience.com/cross-entropy-loss-function-f38c4ec8643e


Full CNN Architecture

• 𝑀-class classification on single-channel 2D input
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(Fig. 6.14 in LWLS)



• Input: 28*28=784-d gray-scale (i.e., 1-channel) hand-written digits

Full CNN Architecture
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784*4=3136 784/4*8=1568 784/4/4*12=588(Example 6.3 in LWLS)



Network Training

• Define a loss function
– Classification: cross entropy for softmax output

– Regression: mean squared error

• Stochastic gradient descent
– Randomly picking training samples to form a mini-batch

– Compute gradient of loss function w.r.t. weights through backpropagation

– Update weights along negative gradient with some (adaptive) learning rate

• Different optimizers
– Adam: adaptive moment estimation – uses running averages on gradients and second order 

moments

– Adagrad: adaptive gradient – uses different learning rates at different iterations

– RMSprop: root mean square propagation – exponentially weighted average of squared gradient to 
adapt learning rate
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Backpropagation for CNN

• BP through nonlinear activation

– Same as before

• BP through pooling

– Average pooling: gradient is equally distributed to all inputs

– Max pooling: gradient is solely assigned to the max input
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(Figures from https://lanstonchu.wordpress.com/2018/09/01/convolutional-neural-network-cnn-backward-propagation-of-the-pooling-layers/) 

https://lanstonchu.wordpress.com/2018/09/01/convolutional-neural-network-cnn-backward-propagation-of-the-pooling-layers/


Backpropagation for CNN

• Convolution is a linear operation between the 
input tensor and a kernel, and it results in an 
output tensor

• BP through convolution to layer input

– Each element of the input tensor affects multiple 
channels of the output tensor through different filters

• BP through convolution to layer weights

– Each weight affects all elements of one output channel 
through one channel of previous layer’s output
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(Adapted from Fig. 6.14 in LWLS)



Computational Graph

• Node: a variable (e.g., scalar, vector, 
matrix, tensor)

• Operation: a simple function of one or 
more variables, outputting a single 
variable

– More complicated functions can be realized 
through composing these operations

• Chain rule of calculus

– Gradient backpropagates through the graph 
using derivatives (Jacobian matrices) of 
operations
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(Fig. 6.8 in GBC)



Dropout

• An important technique to alleviate overfitting

• Randomly (with probability 1-r) dropout some neurons/filters in each iteration of training

– They do not participate in either forward computation or backpropagation

• During inference (i.e., predicting on unseen data), multiple network weights with r

• Conceptually, the learned model is like an ensemble of networks that share some weights

• Practically very effective; theoretically unclear why
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(Fig. 6.18 in LWLS)



Batch Normalization

• Internal Covariance Shift: inputs to internal layers have random shifts on means and 
variances due to the unexpected weight updates of previous layers 

– Remember that gradient w.r.t. a weight is computed assuming all the other weights are static 
(partial derivative), but in practice all weights are updated simultaneously in one backward pass

• Idea: normalize net input to each internal node (or output from its previous node) using 
mean and variance computed in a mini-batch

ℎ =
ℎ − 𝜇

𝜎

where 𝜇 =
1

𝑀
σ𝑖=1
𝑀 ℎ 𝑖 and 𝜎 = 𝛿 +

1

𝑀
σ𝑖=1
𝑀 ℎ 𝑖 − 𝜇 2 . 𝑀 is the mini-batch size, 𝛿 is very small

• Backprop needs to go through this operation, i.e., 
𝜕 ℎ 𝑖

𝜕ℎ 𝑖 is computed. Note ℎ 𝑖 affects ℎ 𝑖 through the 

computation of 𝜇, 𝜎, and the normalization operation. 
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Batch Normalization

• For CNNs: use the same mean and variance for outputs at different spatial 
locations of the same filter

– This is to preserve the statistics of the relations among different spatial locations 

• During inference: apply normalization the same way on test data, but using a 
running average of means and variances of training mini-batches

• Batch normalization removes influences on means and variances (i.e., first-
and second-order moments) of internal layer inputs from previous layers, but 
still preserves their influences on higher order moments

– This is a type of regularization, reducing the expressive power of the network
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CNNs for Different Types of Input

Single-Channel Multi-Channel

1-D Audio waveforms Skeleton animation data: Each channel 
represents one angle of one joint

2-D Audio spectrograms; gray-scale images Color images: RGB channels

3-D Volumetric data, e.g., CT scans Color video data
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(Adapted from Table 9.1 in GBC)



1D CNN for Audio Generation

• WaveNet [van den Oord et al., 2016]

• Dilated causal convolution
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https://www.deepmind.com/blog/wavenet-a-generative-model-for-raw-audio

text-to-speech

free generation
(speech)

Free generation 
(piano music)



2D CNN for Image Classification

• AlexNet [Krizhevsky et al., 2012]
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Filter Visualization of AlexNet

• Learned filters of the 1st convolutional layer

– 96 filters with size of 11*11*3
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[Krizhevsky et al., 2012]



Transfer Learning with Pretrained Networks

• First layers (features extractors) learned from one task (e.g., natural image classification) 
can be useful for another relevant task (e.g., medical image classification)

• Use a pre-trained model (on big data tasks) to build a new model (for small data tasks)
– Remove last few layers (e.g., the last dense layer), which are usually task-specific

– Use the remaining layers to build a new network by adding a couple of layers for the new task

– Train new layers (or fine tune the entire network) on the new task
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VGG-16 Model



ImageNet

• 1.3 M images from 1000 classes
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Summary

• Key properties of CNNs

– Sparse (local) connection

– Shared weights

– Equivariance to translation

• Important components

– Convolution

– Pooling: max pooling, average pooling

– Activation: ReLU

• Important concepts

– Filter, receptive field, channel, tensor

• Applications

– Classification, regression, generation

– 1D, 2D, 3D

• Think: what problems/data are not appropriate for CNNs?
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